JOURNAL OF APPROXIMATION THEORY 55, 318-325 (1988)

Some Characteristic and Non-characteristic Properties of Inner Product Spaces

JAVIER ALONSO AND CARLOS BENÍTEZ

Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain

Communicated by Frank Deutsch

Received March 31, 1986; revised September 3, 1986

INTRODUCTION

Let E be a real or complex normed linear space with unit sphere $S = \{x \in E: ||x|| = 1\}$ and let $\lambda > 0$, $0 < \varepsilon < 2$. We say that E satisfies, respectively, the properties P_{λ} and R_{ε} if

$$P_{\lambda}: x, y \in S, ||x + \lambda y|| = ||x - \lambda y|| \Rightarrow ||x + \lambda y||^{2} = 1 + \lambda^{2},$$
$$R_{\varepsilon}: \delta(\varepsilon) = 1 - (1 - \varepsilon^{2}/4)^{1/2},$$

where $\delta(\varepsilon) = \inf\{1 - (||x + y||/2) : x, y \in S, ||x - y|| = \varepsilon\}$ denotes the modulus of convexity of *E*.

It is well known that inner product spaces satisfy the above properties for every λ and ε . On the other hand Borwein and Keener [4] and Nordlander [10] conjectured, respectively, that if E satisfies either P_{λ} or R_{ε} for some λ or ε then E is an inner product space.

Although the equivalence between the above properties is known (it is mentioned in [3]), we cannot give an exact reference for it and we commence this paper with a proof of this equivalence when $\lambda = \varepsilon (4 - \varepsilon^2)^{-1/2}$. Then we prove that the mentioned conjectures are true for almost every λ and ε , but they are false (at least when *E* is real and two-dimensional) for λ and ε belonging to a countable and dense subset of \mathbb{R}_+ and (0, 2), respectively. In particular, we prove that the conjecture is true for the case $\lambda = 2$ specially considered in [4] in connection with some problems relative to Chebyshev centers.

With this and the paper of Amir and Mach [2] all the conjectures and open questions posed in [4] and [10] are solved, except for a new conjecture which can be stated in the following terms: either P_{λ} or R_{ε} , without restriction on the values of λ and ε , is a characteristic property of the inner product spaces of real dimension ≥ 3 .

RESULTS

The following elementary lemma is the basis of many arguments which we shall use.

LEMMA 1. Let S be the unit sphere of a norm in \mathbb{R}^2 and let $s(\alpha)$ be the point of S which is to a given point s(0) at an angle $0 \le \alpha < 2\pi$, measured with a given orientation of the plane. Then for every $\lambda > 0$ the real functions

$$\alpha \in [0, \pi] \to ||s(0) + \lambda s(\alpha)||, \qquad \alpha \in [0, \pi] \to ||s(0) - \lambda s(\alpha)||$$

are continuous and, respectively, decreasing and increasing.

PROPOSITION 1. Let S be the unit sphere of a real or complex normed linear space E, let $0 < \varepsilon < 2$, and let

$$\delta(\varepsilon) = \inf\{1 - \|x + y\|/2; x, y \in S, \|x - y\| = \varepsilon\}$$

be the modulus of convexity of E. Then for $\lambda = \varepsilon (4 - \varepsilon^2)^{-1/2}$ the following properties are equivalent:

$$\begin{split} P_{\lambda} &: x, y \in S, \|x + \lambda y\| = \|x - \lambda y\| \Rightarrow \|x + \lambda y\|^2 = 1 + \lambda^2 \\ P'_{\lambda} &: x, y \in S, \|x + \lambda y\|^2 = 1 + \lambda^2 \Rightarrow \|x + \lambda y\| = \|x - \lambda y\| \\ Q_{\varepsilon} &: x, y \in S, \|x - y\| = \varepsilon \Rightarrow \|x + y\|^2 = 4 - \varepsilon^2 \\ R_{\varepsilon} &: \delta(\varepsilon) = 1 - (1 - \varepsilon^2/4)^{1/2} \\ T_{\varepsilon} &: \forall x, y \in S, [\|x - y\| - \varepsilon] [\|x + y\|^2 - (4 - \varepsilon^2)] \leq 0. \end{split}$$

Proof. We shall prove the six implications

$$P_{\lambda} \Rightarrow P'_{\lambda} \Rightarrow Q_{\varepsilon} \Rightarrow R_{\varepsilon} \Rightarrow Q_{\varepsilon} \Rightarrow T_{\varepsilon} \Rightarrow P_{\lambda}.$$

As we shall see the third and the fifth are obvious. The first is rather intricate, but we shall make use of it later.

 $(P_{\lambda} \Rightarrow P'_{\lambda})$. Assume by contradiction the existence of x, $y \in S$ such that

$$||x + \lambda y||^2 = 1 + \lambda^2 \neq ||x - \lambda y||^2.$$

Then it follows from Lemma 1 and the hypothesis that in the real plane $\langle x, y \rangle$, endowed with the orientation $\omega = [x, y]$, there exist $u, v \in S$ such that $[u, y] = [x, v] = \omega$ and

$$||u + \lambda y||^2 = 1 + \lambda^2 = ||u - \lambda y||^2$$
, $||x + \lambda v||^2 = 1 + \lambda^2 = ||x - \lambda v||^2$.

Let $a, b \in \mathbb{R}$ be such that $ax + b(u - x) = x + \lambda y$. Since the function F(t) = ||ax + t(u - x)|| is convex and such that

$$F(0) = F(a) = |a|, \qquad F(b) = F(b+1) = (1+\lambda^2)^{1/2}$$

the ordering of the points 0, a, b, b + 1 implies that F attains its minimum value, $(1 + \lambda^2)^{1/2}$, in a real segment which contains such points.

If $a = -(1 + \lambda^2)^{1/2}$ then, writing

$$-(1+\lambda^2)^{1/2}x + b(u-x) = x + \lambda y$$

in the equivalent form

$$-(1+\lambda^2)^{1/2}x + \frac{(1+\lambda^2)^{1/2}b}{1+(1+\lambda^2)^{1/2}}(u-x) = \frac{(1+\lambda^2)^{1/2}\lambda}{1+(1+\lambda^2)^{1/2}}y$$

and taking into account that

$$F\left(\frac{(1+\lambda^2)^{1/2}b}{1+(1+\lambda^2)^{1/2}}\right) = (1+\lambda^2)^{1/2},$$

we obtain the false equality

$$\frac{(1+\lambda^2)^{1/2}}{1+(1+\lambda^2)^{1/2}} = (1+\lambda^2)^{1/2}.$$

Therefore $a = (1 + \lambda^2)^{1/2}$ and the four points

$$x, u, (1 + \lambda^2)^{-1/2} (x + \lambda y), (1 + \lambda^2)^{-1/2} (u + \lambda y)$$

are in a segment contained in S.

For analogous reasons also the four points

$$y, v, (1 + \lambda^2)^{-1/2} (x + \lambda y), (1 + \lambda^2)^{-1/2} (x + \lambda v)$$

are in a segment contained in S.

If $||x - \lambda y||^2 > 1 + \lambda^2$ then $[x, u] = [v, y] = \omega$ and all the above seven points are in the straight line passing through x and y, from which follows the contradictory equality $||x + \lambda y|| = 1 + \lambda$.

In the other case, $||x - \lambda y||^2 < 1 + \lambda^2$, we have that $||u + \lambda v||^2 < 1 + \lambda^2$ and hence that for every 0 < t < 1

$$||tx + (1-t)u + \lambda[ty + (1-t)v]||^2 < 1 + \lambda^2.$$

Therefore Lemma 1 implies that

$$||tx + (1-t)u - \lambda[ty + (1-t)v]||^2 \ge 1 + \lambda^2$$

which is contradictory with $||x - \lambda y||^2 < 1 + \lambda^2$.

 $(P'_{\lambda} \Rightarrow Q_{\varepsilon})$. Let $x, y \in S$ be such that $||x - y|| = \varepsilon$ and let

 $u = (4 - \varepsilon^2)^{-1/2} (x + y), \quad v = \varepsilon^{-1} (x - y).$

Then $v \in S$ and

$$||u + \lambda v||^2 = ||u - \lambda v||^2 = 4(4 - \varepsilon^2)^{-1} = 1 + \lambda^2.$$

Since the function $F(t) = ||tu + \lambda v||$ is convex and such that $\lambda = F(0) < F(1) = F(-1) = (1 + \lambda^2)^{1/2}$, it follows from Lemma 1 that $u \in S$, i.e., that $||x + y||^2 = 4 - \varepsilon^2$.

 $(Q_{\epsilon} \Rightarrow R_{\epsilon})$. It is obvious.

 $(R_{\varepsilon} \Rightarrow Q_{\varepsilon})$. It is proved in [10] that in every real plane of *E* the set $\{x + y: x, y \in S, ||x - y|| = \varepsilon\}$ is a symmetric Jordan rectifiable curve which encloses $(4 - \varepsilon^2)$ times the area enclosed by *S*. Then the existence of $x, y \in S$ such that $||x - y|| = \varepsilon$ and $||x + y||^2 < 4 - \varepsilon^2$ would imply the contradictory existence of $u, v \in S$ such that $||u - v|| = \varepsilon$ and $||u + v||^2 > 4 - \varepsilon^2$.

 $(Q_{\varepsilon} \Rightarrow T_{\varepsilon})$. It is an immediate corollary of Lemma 1.

 $(T_{\varepsilon} \Rightarrow P_{\lambda})$. Let $x, y \in S$ be such that $||x + \lambda y|| = ||x - \lambda y||$ and let

$$u = ||x + \lambda y||^{-1} (x + \lambda y), \quad v = ||x + \lambda y||^{-1} (x - \lambda y).$$

Then $u, v \in S$ and

$$||u-v|| = 2\lambda ||x+\lambda y||^{-1}, \qquad ||u+v|| = 2 ||x+\lambda y||^{-1}.$$

If $||x + \lambda y||^2 < 1 + \lambda^2$ then

 $||u-v|| > 2\lambda(1+\lambda^2)^{-1/2} = \varepsilon, \qquad ||u+v||^2 > 4(1+\lambda^2)^{-1} = 4-\varepsilon^2$

which contradicts T_{ε} . And analogously for $||x + \lambda y||^2 > 1 + \lambda^2$.

LEMMA 2. If a real or complex normed linear space E satisfies the property P_{λ} ($\lambda > 0$), then in every real two-dimensional linear subspace of E there exist x, $y \in S$ such that

$$||x + \lambda y|| = ||x - \lambda y|| = ||\lambda x + y|| = ||\lambda x - y|| = (1 + \lambda^2)^{1/2}.$$

Proof. We can suppose that E is the linear space \mathbb{R}^2 endowed with a norm and an orientation ω .

Let $s: \alpha \in [0, 2\pi] \to s(\alpha) \in S$ be the parametrization of S mentioned in Lemma 1. Elementary arguments prove that if E satisfies the property P_{λ} then for every $0 \le \alpha \le \pi$ there exists a unique $\alpha < g(\alpha) < \alpha + \pi$ such that

$$\|s(\alpha) + \lambda s(g(\alpha))\| = \|s(\alpha) - \lambda s(g(\alpha))\|, \qquad [s(\alpha), s(g(\alpha))] = \omega.$$

Also it is easy to see that the real function g is continuous and strictly increasing on $[0, \pi]$, and that if either $s(\alpha) + \lambda s(g(\alpha)) = s(\beta) + \lambda s(g(\beta))$ or $\lambda s(\alpha) + s(g(\alpha)) = \lambda s(\beta) + s(g(\beta))$ then $\alpha = \beta$.

Therefore the set

$$S_{\lambda} = \{x + \lambda y : x, y \in S, [x, y] = \omega, ||x + \lambda y|| = ||x - \lambda y|| \}$$

is the symmetric Jordan rectifiable curve $(1 + \lambda^2)^{1/2} S$ and the set

$$S'_{\lambda} = \{ \lambda x + y : x, y \in S, [x, y] = \omega, ||x + \lambda y|| = ||x - \lambda y|| \}$$

is also a symmetric Jordan rectifiable curve.

The area enclosed by S_{λ} is $(1 + \lambda^2)$ times the area enclosed by S and, if we suppose that ω is the positive orientation of the plane, the area enclosed by S'_{λ} is given by

$$A(S'_{\lambda}) = \int_0^{\pi} \left[\lambda s_1(\alpha) + s_1(g(\alpha)) \right] d\left[\lambda s_2(\alpha) + s_2(g(\alpha)) \right]$$
$$- \int_0^{\pi} \left[\lambda s_2(\alpha) + s_2(g(\alpha)) \right] d\left[\lambda s_1(\alpha) + s_1(g(\alpha)) \right].$$

Taking into account the analogous formulae for $A(S_{\lambda})$ and A(S) we obtain that $A(S'_{\lambda}) = (1 + \lambda^2) A(S) = A(S_{\lambda})$. Thus $S_{\lambda} \cap S'_{\lambda} \neq \emptyset$ and there exist $x, y \in S$ such that

$$\|x + \lambda y\|^2 = \|x - \lambda y\|^2 = 1 + \lambda^2$$
, $\|\lambda x + y\|^2 = 1 + \lambda^2$, $[x, y] = \omega$.

Finally Proposition 1 assures that $\|\lambda x - y\|^2 = 1 + \lambda^2$.

PROPOSITION 2. If a real or complex normed linear space E satisfies the property P_{λ} for some $\lambda > 0$ such that

$$\lambda \notin D = \{ \tan(k\pi/2n) : n = 2, 3, ...; k = 1, 2, ..., n-1 \}$$

then E is an inner product space.

Proof. Since E is an inner product space if and only if the same is true for all its real two-dimensional linear subspaces, we can consider E as the linear space \mathbb{R}^2 endowed with a norm.

Let $\lambda > 0$. By Lemma 2 we can take $x, y \in S$ such that

$$||x + \lambda y|| = ||x - \lambda y|| = ||\lambda x + y|| = ||\lambda x - y|| = (1 + \lambda^2)^{1/2}.$$

Performing, if necessary, a linear transformation of the plane we can suppose that x = s(0) = (1, 0), $y = s(\pi/2) = (0, 1)$, where s denotes the parametrization of S given in Lemma 1.

Then, if C is the unit euclidean circumference of the plane and if $0 < \theta < \pi/2$ is such that $\lambda = \tan \theta$, the points

$$x_1 = (1 + \lambda^2)^{-1/2} (x + \lambda y) = s(\theta), \quad y_1 = (1 + \lambda^2)^{-1/2} (-\lambda x + y) = s(\theta + \pi/2)$$

belong to $S \cap C$ and, taking into account Proposition 1, they are such that

$$||x_1 + \lambda y_1|| = ||x_1 - \lambda y_1|| = ||\lambda x_1 + y_1|| = ||\lambda x_1 - y_1|| = (1 + \lambda^2)^{1/2}.$$

The same arguments are valid to prove that the points

$$x_2 = (1 + \lambda^2)^{-1/2} (x_1 + \lambda y_1) = s(2\theta),$$

$$y_2 = (1 + \lambda^2)^{-1/2} (-\lambda x_1 + y_1) = s(2\theta + \pi/2)$$

also belong to $S \cap C$ and they are such that

$$||x_2 + \lambda y_2|| = ||x_2 - \lambda y_2|| = ||\lambda x_2 + y_2|| = ||\lambda x_2 - y_2|| = (1 + \lambda^2)^{1/2}$$

Pursuing this process we obtain a set $\{x, x_1, x_2, ...\}$ which is contained in $S \cap C$ and, provided $\lambda \notin D$, is dense in S and C. Therefore S = C and E is an inner product space.

Remark. If the unit sphere of a norm in \mathbb{R}^2 is invariant under rotations of angle $\pi/2n$ (n=2, 3, ...) and if $\lambda = \tan(k\pi/2n)$ (k=1, 2, ..., n-1), then such a normed linear space satisfies the property P_{λ} .

Thus for every $\lambda \in D$ there exist real two-dimensional noninner product spaces satisfying P_{λ} , for example, the linear space \mathbb{R}^2 endowed with the norm whose unit sphere is the regular 4n-gon.

COROLLARY. For $\varepsilon \neq 2\cos(k\pi/2n)$ (n=2, 3, ...; k=1, 2, ..., n-1), the properties Q_{ε} , R_{ε} , and T_{ε} are characteristic of the inner product spaces.

Nevertheless, for $\varepsilon = 2 \cos(k\pi/2n)$ there exist real two-dimensional noninner product spaces satisfying the above properties.

Conjecture. The property P_{λ} , without restriction on $\lambda > 0$, is characteristic of the inner product spaces of real dimension ≥ 3 .

PROPOSITION 3. If a real or complex normed linear space E satisfies the property

$$P_2: x, y \in S, ||x + 2y|| = ||x - 2y|| \Rightarrow ||x + 2y||^2 = 5$$

then E is an inner product space.

Proof. We only need to show that $2 \notin D$.

Suppose there exist n = 2, 3, ... and k = 1, 2, ..., n - 1, such that $\tan(k\pi/2n) = 2$. Denoting $\theta = k\pi/2n$ and using a well-known trigonometrical formula we have that

$$\tan 2n\theta = \frac{\binom{2n}{1}\tan\theta - \binom{2n}{3}\tan^3\theta + \cdots \pm \binom{2n}{2n-1}\tan^{2n-1}\theta}{\binom{2n}{0}\tan^0\theta - \binom{2n}{2}\tan^2\theta + \cdots \mp \binom{2n}{2n}\tan^{2n}\theta} = 0.$$

Then it suffices to see that 2 is not a root of the polynomial

$$\binom{2n}{1} - \binom{2n}{3}x^2 + \binom{2n}{5}x^4 - \cdots \pm \binom{2n}{2n-1}x^{2n-2}$$

and this follows from the fact that if $2n = 2^{p}q$, with q odd, then for k = 3, 5, ..., 2n - 1, $\binom{2n}{k} = 2^{p}r_{k}$, with r_{k} integer.

Remark. Following James [7] and Carlsson [5] we can say that x is λ -Isosceles orthogonal to y, $x \perp_{\lambda I} y$, when $||x + \lambda y|| = ||x - \lambda y||$ and that x is λ -Pythagorean orthogonal to y, $x \perp_{\lambda P} y$, when $||x + \lambda y||^2 = ||x||^2 + \lambda^2 ||y||^2$.

Then we can paraphrase Proposition 2 by saying that for every $\lambda \notin D$ the property (or its converse)

$$x, y \in S, \qquad x \perp y \Rightarrow x \perp y$$

is characteristic of the inner product spaces.

With this formulation Proposition 2 is in the line of many results of characterization of inner product spaces based in the relation between various types of generalized orthogonality in normed linear spaces [1, 6, 8, 9, 11].

ACKNOWLEDGMENT

Professor Dan Amir called our attention to the case dim $E \ge 3$ and to the equivalence between property P_{λ} (the only one considered in the first version of this paper) and property R_{ε} . It is a pleasure to acknowledge those and other interesting hints.

References

- 1. J. ALONSO, Ortogonalidad en Espacios Normados, *Matemáticas*, Universidad de Extremadura, 4 (1984).
- 2. D. AMIR AND J. MACH, Chebyshev centers in normed spaces, J. Approx. Theory 40 (1984), 364-374.

- 3. D. AMIR, "Characterizations of Inner Product Spaces," Birkhäuser, 1986.
- 4. J. BORWEIN AND L. KEENER, The Hausdorff metric and Chebyshev centers, J. Approx. Theory 28 (1980), 366-376.
- 5. S. O. CARLSSON, Orthogonality in normed linear spaces, Ark. Mat. 4, No. 22 (1961), 297-318.
- 6. M. M. DAY, Some characterizations of inner product spaces, *Trans. Amer. Math. Soc.* 62 (1947), 320-337.
- 7. R. C. JAMES, Orthogonality in normed linear spaces, Duke Math. J. 12 (1945), 291-302.
- 8. O. P. KAPOOR AND J. MATHUR, Some geometric characterizations of inner product spaces, Bull. Austral. Math. Soc. 24 (1981), 239-246.
- 9. O. P. KAPOOR AND J. PRASAD, Orthogonality and characterizations of inner product spaces, Bull. Austral. Math. Soc. 19 (1978), 403-416.
- 10. G. NORDLANDER, The modulus of convexity in normed linear spaces, Ark. Mat. 4, No. 2 (1958), 15-17.
- 11. K. OHIRA, On some characterizations of abstract Euclidean spaces by properties of orthogonality, Kumamoto J. Sci. (Math.) 1 (1952), 23-26.