Some Characteristic and Non-characteristic Properties of Inner Product Spaces

Javier Alonso and Carlos Benítez
Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain

Communicated by Frank Deutsch
Received March 31, 1986; revised September 3, 1986

Introduction

Let E be a real or complex normed linear space with unit sphere $S=$ $\{x \in E:\|x\|=1\}$ and let $\lambda>0,0<\varepsilon<2$. We say that E satisfies, respectively, the properties P_{λ} and R_{ε} if

$$
\begin{gathered}
P_{\lambda}: x, y \in S,\|x+\lambda y\|=\|x-\lambda y\| \Rightarrow\|x+\lambda y\|^{2}=1+\lambda^{2}, \\
R_{\varepsilon}: \delta(\varepsilon)=1-\left(1-\varepsilon^{2} / 4\right)^{1 / 2},
\end{gathered}
$$

where $\delta(\varepsilon)=\inf \{1-(\|x+y\| / 2): x, y \in S,\|x-y\|=\varepsilon\}$ denotes the modulus of convexity of E.
It is well known that inner product spaces satisfy the above properties for every λ and ε. On the other hand Borwein and Keener [4] and Nordlander [10] conjectured, respectively, that if E satisfies either P_{λ} or R_{ε} for some λ or ε then E is an inner product space.

Although the equivalence between the above properties is known (it is mentioned in [3]), we cannot give an exact reference for it and we commence this paper with a proof of this equivalence when $\lambda=\varepsilon\left(4-\varepsilon^{2}\right)^{-1 / 2}$. Then we prove that the mentioned conjectures are true for almost every λ and ε, but they are false (at least when E is real and two-dimensional) for λ and ε belonging to a countable and dense subset of \mathbb{R}_{+}and $(0,2)$, respectively. In particular, we prove that the conjecture is true for the case $\lambda=2$ specially considered in [4] in connection with some problems relative to Chebyshev centers.
With this and the paper of Amir and Mach [2] all the conjectures and open questions posed in [4] and [10] are solved, except for a new conjecture which can be stated in the following terms: either P_{λ} or R_{ε}, without restriction on the values of λ and ε, is a characteristic property of the inner product spaces of real dimension $\geqslant 3$.

Results

The following elementary lemma is the basis of many arguments which we shall use.

Lemma 1. Let S be the unit sphere of a norm in \mathbb{R}^{2} and let $s(\alpha)$ be the point of S which is to a given point $s(0)$ at an angle $0 \leqslant \alpha<2 \pi$, measured with a given orientation of the plane. Then for every $\lambda>0$ the real functions

$$
\alpha \in[0, \pi] \rightarrow\|s(0)+\lambda s(\alpha)\|, \quad \alpha \in[0, \pi] \rightarrow\|s(0)-\lambda s(\alpha)\|
$$

are continuous and, respectively, decreasing and increasing.

Proposition 1. Let S be the unit sphere of a real or complex normed linear space E, let $0<\varepsilon<2$, and let

$$
\delta(\varepsilon)=\inf \{1-\|x+y\| / 2: x, y \in S,\|x-y\|=\varepsilon\}
$$

be the modulus of convexity of E. Then for $\lambda=\varepsilon\left(4-\varepsilon^{2}\right)^{-1 / 2}$ the following properties are equivalent:

$$
\begin{aligned}
& P_{\lambda}: x, y \in S,\|x+\lambda y\|=\|x-\lambda y\| \Rightarrow\|x+\lambda y\|^{2}=1+\lambda^{2} \\
& P_{\lambda}^{\prime}: x, y \in S,\|x+\lambda y\|^{2}=1+\lambda^{2} \Rightarrow\|x+\lambda y\|=\|x-\lambda y\| \\
& Q_{\varepsilon}: x, y \in S,\|x-y\|=\varepsilon \Rightarrow\|x+y\|^{2}=4-\varepsilon^{2} \\
& R_{\varepsilon}: \delta(\varepsilon)=1-\left(1-\varepsilon^{2} / 4\right)^{1 / 2} \\
& T_{\varepsilon}: \forall x, y \in S,[\|x-y\|-\varepsilon]\left[\|x+y\|^{2}-\left(4-\varepsilon^{2}\right)\right] \leqslant 0 .
\end{aligned}
$$

Proof. We shall prove the six implications

$$
P_{\lambda} \Rightarrow P_{\lambda}^{\prime} \Rightarrow Q_{\varepsilon} \Rightarrow R_{\varepsilon} \Rightarrow Q_{\varepsilon} \Rightarrow T_{\varepsilon} \Rightarrow P_{\lambda}
$$

As we shall see the third and the fifth are obvious. The first is rather intricate, but we shall make use of it later.
$\left(P_{\lambda} \Rightarrow P_{\lambda}^{\prime}\right)$. Assume by contradiction the existence of $x, y \in S$ such that

$$
\|x+\lambda y\|^{2}=1+\lambda^{2} \neq\|x-\lambda y\|^{2}
$$

Then it follows from Lemma 1 and the hypothesis that in the real plane $\langle x, y\rangle$, endowed with the orientation $\omega=[x, y]$, there exist $u, v \in S$ such that $[u, y]=[x, v]=\omega$ and

$$
\|u+\lambda y\|^{2}=1+\lambda^{2}=\|u-\lambda y\|^{2}, \quad\|x+\lambda v\|^{2}=1+\lambda^{2}=\|x-\lambda v\|^{2}
$$

Let $a, b \in \mathbb{R}$ be such that $a x+b(u-x)=x+\lambda y$. Since the function $F(t)=\|a x+t(u-x)\|$ is convex and such that

$$
F(0)=F(a)=|a|, \quad F(b)=F(b+1)=\left(1+\lambda^{2}\right)^{1 / 2}
$$

the ordering of the points $0, a, b, b+1$ implies that F attains its minimum value, $\left(1+\lambda^{2}\right)^{1 / 2}$, in a real segment which contains such points.

If $a=-\left(1+\lambda^{2}\right)^{1 / 2}$ then, writing

$$
-\left(1+\lambda^{2}\right)^{1 / 2} x+b(u-x)=x+\lambda y
$$

in the equivalent form

$$
-\left(1+\lambda^{2}\right)^{1 / 2} x+\frac{\left(1+\lambda^{2}\right)^{1 / 2} b}{1+\left(1+\lambda^{2}\right)^{1 / 2}}(u-x)=\frac{\left(1+\lambda^{2}\right)^{1 / 2} \lambda}{1+\left(1+\lambda^{2}\right)^{1 / 2}} y
$$

and taking into account that

$$
F\left(\frac{\left(1+\lambda^{2}\right)^{1 / 2} b}{1+\left(1+\lambda^{2}\right)^{1 / 2}}\right)=\left(1+\lambda^{2}\right)^{1 / 2}
$$

we obtain the false equality

$$
\frac{\left(1+\lambda^{2}\right)^{1 / 2} \lambda}{1+\left(1+\lambda^{2}\right)^{1 / 2}}=\left(1+\lambda^{2}\right)^{1 / 2}
$$

Therefore $a=\left(1+\lambda^{2}\right)^{1 / 2}$ and the four points

$$
x, u,\left(1+\lambda^{2}\right)^{-1 / 2}(x+\lambda y),\left(1+\lambda^{2}\right)^{-1 / 2}(u+\lambda y)
$$

are in a segment contained in S.
For analogous reasons also the four points

$$
y, v,\left(1+\lambda^{2}\right)^{-1 / 2}(x+\lambda y),\left(1+\lambda^{2}\right)^{-1 / 2}(x+\lambda v)
$$

are in a segment contained in S.
If $\|x-\lambda y\|^{2}>1+\lambda^{2}$ then $[x, u]=[v, y]=\omega$ and all the above seven points are in the straight line passing through x and y, from which follows the contradictory equality $\|x+\lambda y\|=1+\lambda$.

In the other case, $\|x-\lambda y\|^{2}<1+\lambda^{2}$, we have that $\|u+\lambda v\|^{2}<1+\lambda^{2}$ and hence that for every $0<t<1$

$$
\|t x+(1-t) u+\lambda[t y+(1-t) v]\|^{2}<1+\lambda^{2} .
$$

Therefore Lemma 1 implies that

$$
\|t x+(1-t) u-\lambda[t y+(1-t) v]\|^{2} \geqslant 1+\lambda^{2}
$$

which is contradictory with $\|x-\lambda y\|^{2}<1+\lambda^{2}$.
$\left(P_{\lambda}^{\prime} \Rightarrow Q_{\varepsilon}\right)$. Let $x, y \in S$ be such that $\|x-y\|=\varepsilon$ and let

$$
u=\left(4-\varepsilon^{2}\right)^{-1 / 2}(x+y), \quad v=\varepsilon^{-1}(x-y) .
$$

Then $v \in S$ and

$$
\|u+\lambda v\|^{2}=\|u-\lambda v\|^{2}=4\left(4-\varepsilon^{2}\right)^{-1}=1+\lambda^{2} .
$$

Since the function $F(t)=\|t u+\lambda v\|$ is convex and such that $\lambda=F(0)<$ $F(1)=F(-1)=\left(1+\lambda^{2}\right)^{1 / 2}$, it follows from Lemma 1 that $u \in S$, i.e., that $\|x+y\|^{2}=4-\varepsilon^{2}$.
($Q_{\varepsilon} \Rightarrow R_{\varepsilon}$). It is obvious.
($R_{\varepsilon} \Rightarrow Q_{\varepsilon}$). It is proved in [10] that in every real plane of E the set $\{x+y: x, y \in S,\|x-y\|=\varepsilon\}$ is a symmetric Jordan rectifiable curve which encloses $\left(4-\varepsilon^{2}\right)$ times the area enclosed by S. Then the existence of $x, y \in S$ such that $\|x-y\|=\varepsilon$ and $\|x+y\|^{2}<4-\varepsilon^{2}$ would imply the contradictory existence of $u, v \in S$ such that $\|u-v\|=\varepsilon$ and $\|u+v\|^{2}>4-\varepsilon^{2}$.
($Q_{\varepsilon} \Rightarrow T_{\varepsilon}$). It is an immediate corollary of Lemma 1.
$\left(T_{\varepsilon} \Rightarrow P_{\lambda}\right)$. Let $x, y \in S$ be such that $\|x+\lambda y\|=\|x-\lambda y\|$ and let

$$
u=\|x+\lambda y\|^{-1}(x+\lambda y), \quad v=\|x+\lambda y\|^{-1}(x-\lambda y) .
$$

Then $u, v \in S$ and

$$
\|u-v\|=2 \lambda\|x+\lambda y\|^{-1}, \quad\|u+v\|=2\|x+\lambda y\|^{-1} .
$$

If $\|x+\lambda y\|^{2}<1+\lambda^{2}$ then

$$
\|u-v\|>2 \lambda\left(1+\lambda^{2}\right)^{-1 / 2}=\varepsilon, \quad\|u+v\|^{2}>4\left(1+\lambda^{2}\right)^{-1}=4-\varepsilon^{2}
$$

which contradicts T_{ε}. And analogously for $\|x+\lambda y\|^{2}>1+\lambda^{2}$.

Lemma 2. If a real or complex normed linear space E satisfies the property $P_{\lambda}(\lambda>0)$, then in every real two-dimensional linear subspace of E there exist $x, y \in S$ such that

$$
\|x+\lambda y\|=\|x-\lambda y\|=\|\lambda x+y\|=\|\lambda x-y\|=\left(1+\lambda^{2}\right)^{1 / 2} .
$$

Proof. We can suppose that E is the linear space \mathbb{R}^{2} endowed with a norm and an orientation ω.

Let $s: \alpha \in[0,2 \pi] \rightarrow s(\alpha) \in S$ be the parametrization of S mentioned in Lemma 1. Elementary arguments prove that if E satisfies the property P_{λ} then for every $0 \leqslant \alpha \leqslant \pi$ there exists a unique $\alpha<g(\alpha)<\alpha+\pi$ such that

$$
\|s(\alpha)+\lambda s(g(\alpha))\|=\|s(\alpha)-\lambda s(g(\alpha))\|, \quad[s(\alpha), s(g(\alpha))]=\omega .
$$

Also it is easy to see that the real function g is continuous and strictly increasing on $[0, \pi]$, and that if either $s(\alpha)+\lambda s(g(\alpha))=s(\beta)+\lambda s(g(\beta))$ or $\lambda s(\alpha)+s(g(\alpha))=\lambda s(\beta)+s(g(\beta))$ then $\alpha=\beta$.

Therefore the set

$$
S_{i}=\{x+\lambda y: x, y \in S,[x, y]=\omega,\|x+\lambda y\|=\|x-\lambda y\|\}
$$

is the symmetric Jordan rectifiable curve $\left(1+\lambda^{2}\right)^{1 / 2} S$ and the set

$$
S_{\lambda}^{\prime}=\{\lambda x+y: x, y \in S,[x, y]=\omega,\|x+\lambda y\|=\|x-\lambda y\|\}
$$

is also a symmetric Jordan rectifiable curve.
The area enclosed by S_{λ} is $\left(1+\lambda^{2}\right)$ times the area enclosed by S and, if we suppose that ω is the positive orientation of the plane, the area enclosed by S_{λ}^{\prime} is given by

$$
\begin{aligned}
A\left(S_{\lambda}^{\prime}\right)= & \int_{0}^{\pi}\left[\lambda s_{1}(\alpha)+s_{1}(g(\alpha))\right] d\left[\lambda s_{2}(\alpha)+s_{2}(g(\alpha))\right] \\
& -\int_{0}^{\pi}\left[\lambda s_{2}(\alpha)+s_{2}(g(\alpha))\right] d\left[\lambda s_{1}(\alpha)+s_{1}(g(\alpha))\right]
\end{aligned}
$$

Taking into account the analogous formulae for $A\left(S_{\lambda}\right)$ and $A(S)$ we obtain that $A\left(S_{\lambda}^{\prime}\right)=\left(1+\lambda^{2}\right) A(S)=A\left(S_{\lambda}\right)$. Thus $S_{\lambda} \cap S_{\lambda}^{\prime} \neq \varnothing$ and there exist $x, y \in S$ such that

$$
\|x+\lambda y\|^{2}=\|x-\lambda y\|^{2}=1+\lambda^{2}, \quad\|\lambda x+y\|^{2}=1+\lambda^{2}, \quad[x, y]=\omega .
$$

Finally Proposition 1 assures that $\|\lambda x-y\|^{2}=1+\lambda^{2}$.
Proposition 2. If a real or complex normed linear space E satisfies the property P_{λ} for some $\lambda>0$ such that

$$
\lambda \notin D=\{\tan (k \pi / 2 n): n=2,3, \ldots ; k=1,2, \ldots, n-1\}
$$

then E is an inner product space.
Proof. Since E is an inner product space if and only if the same is true for all its real two-dimensional linear subspaces, we can consider E as the linear space \mathbb{R}^{2} endowed with a norm.

Let $\lambda>0$. By Lemma 2 we can take $x, y \in S$ such that

$$
\|x+\lambda y\|=\|x-\lambda y\|=\|\lambda x+y\|=\|\lambda x-y\|=\left(1+\lambda^{2}\right)^{1 / 2} .
$$

Performing, if necessary, a linear transformation of the plane we can suppose that $x=s(0)=(1,0), y=s(\pi / 2)=(0,1)$, where s denotes the parametrization of S given in Lemma 1.

Then, if C is the unit euclidean circumference of the plane and if $0<\theta<\pi / 2$ is such that $\lambda=\tan \theta$, the points
$x_{1}=\left(1+\lambda^{2}\right)^{-1 / 2}(x+\lambda y)=s(\theta), \quad y_{1}=\left(1+\lambda^{2}\right)^{-1 / 2}(-\lambda x+y)=s(\theta+\pi / 2)$
belong to $S \cap C$ and, taking into account Proposition 1, they are such that

$$
\left\|x_{1}+\lambda y_{1}\right\|=\left\|x_{1}-\lambda y_{1}\right\|=\left\|\lambda x_{1}+y_{1}\right\|=\left\|\lambda x_{1}-y_{1}\right\|=\left(1+\lambda^{2}\right)^{1 / 2} .
$$

The same arguments are valid to prove that the points

$$
\begin{aligned}
& x_{2}=\left(1+\lambda^{2}\right)^{-1 / 2}\left(x_{1}+\lambda y_{1}\right)=s(2 \theta), \\
& y_{2}=\left(1+\lambda^{2}\right)^{-1 / 2}\left(-\lambda x_{1}+y_{1}\right)=s(2 \theta+\pi / 2)
\end{aligned}
$$

also belong to $S \cap C$ and they are such that

$$
\left\|x_{2}+\lambda y_{2}\right\|=\left\|x_{2}-\lambda y_{2}\right\|=\left\|\lambda x_{2}+y_{2}\right\|=\left\|\lambda x_{2}-y_{2}\right\|=\left(1+\lambda^{2}\right)^{1 / 2} .
$$

Pursuing this process we obtain a set $\left\{x, x_{1}, x_{2}, \ldots\right\}$ which is contained in $S \cap C$ and, provided $\lambda \notin D$, is dense in S and C. Therefore $S=C$ and E is an inner product space.

Remark. If the unit sphere of a norm in \mathbb{R}^{2} is invariant under rotations of angle $\pi / 2 n(n=2,3, \ldots)$ and if $\lambda=\tan (k \pi / 2 n)(k=1,2, \ldots, n-1)$, then such a normed linear space satisfies the property P_{λ}.
Thus for every $\lambda \in D$ there exist real two-dimensional noninner product spaces satisfying P_{λ}, for example, the linear space \mathbb{R}^{2} endowed with the norm whose unit sphere is the regular $4 n$-gon.

Corollary. For $\varepsilon \neq 2 \cos (k \pi / 2 n) \quad(n=2,3, \ldots ; k=1,2, \ldots, n-1)$, the properties $Q_{\varepsilon}, R_{\varepsilon}$, and T_{ε} are characteristic of the inner product spaces.

Nevertheless, for $\varepsilon=2 \cos (k \pi / 2 n)$ there exist real two-dimensional noninner product spaces satisfying the above properties.

Conjecture. The property P_{λ}, without restriction on $\lambda>0$, is characteristic of the inner product spaces of real dimension $\geqslant 3$.

Proposition 3. If a real or complex normed linear space E satisfies the property

$$
P_{2}: x, y \in S,\|x+2 y\|=\|x-2 y\| \Rightarrow\|x+2 y\|^{2}=5
$$

then E is an inner product space.
Proof. We only need to show that $2 \notin D$.

Suppose there exist $n=2,3, \ldots$ and $k=1,2, \ldots, n-1$, such that $\tan (k \pi / 2 n)=2$. Denoting $\theta=k \pi / 2 n$ and using a well-known trigonometrical formula we have that

$$
\tan 2 n \theta=\frac{\binom{2 n}{1} \tan \theta-\binom{2 n}{3} \tan ^{3} \theta+\cdots \pm\binom{ 2 n}{2 n-1} \tan ^{2 n-1} \theta}{\binom{2 n}{0} \tan ^{0} \theta-\binom{2 n}{2} \tan ^{2} \theta+\cdots \mp\binom{2 n}{2 n} \tan ^{2 n} \theta}=0
$$

Then it suffices to see that 2 is not a root of the polynomial

$$
\binom{2 n}{1}-\binom{2 n}{3} x^{2}+\binom{2 n}{5} x^{4}-\cdots \pm\binom{ 2 n}{2 n-1} x^{2 n-2}
$$

and this follows from the fact that if $2 n=2^{p} q$, with q odd, then for $k=3,5, \ldots, 2 n-1,\binom{2 n}{k}=2^{p} r_{k}$, with r_{k} integer.

Remark. Following James [7] and Carlsson [5] we can say that x is λ-Isosceles orthogonal to $y, x \perp_{\lambda I} y$, when $\|x+\lambda y\|=\|x-\lambda y\|$ and that x is λ-Pythagorean orthogonal to $y, x \perp_{\lambda P} y$, when $\|x+\lambda y\|^{2}=\|x\|^{2}+\lambda^{2}\|y\|^{2}$.

Then we can paraphrase Proposition 2 by saying that for every $\lambda \notin D$ the property (or its converse)

$$
x, y \in S, \quad x \underset{\lambda I}{\perp} y \Rightarrow x \underset{\lambda P}{\perp} y
$$

is characteristic of the inner product spaces.
With this formulation Proposition 2 is in the line of many results of characterization of inner product spaces based in the relation between various types of generalized orthogonality in normed linear spaces $[1,6,8$, 9, 11].

Acknowledgment

Professor Dan Amir called our attention to the case $\operatorname{dim} E \geqslant 3$ and to the equivalence between property P_{λ} (the only one considered in the first version of this paper) and property R_{c}. It is a pleasure to acknowledge those and other interesting hints.

References

1. J. Alonso, Ortogonalidad en Espacios Normados, Matemáticas, Universidad de Extremadura, 4 (1984).
2. D. Amir and J. Mach, Chebyshev centers in normed spaces, J. Approx. Theory $\mathbf{4 0}$ (1984), 364-374.
3. D. Amir, "Characterizations of Inner Product Spaces," Birkhäuser, 1986.
4. J. Borwein and L. Keener, The Hausdorff metric and Chebyshev centers, J. Approx. Theory 28 (1980), 366-376.
5. S. O. Carlsson, Orthogonality in normed linear spaces, Ark. Mat. 4, No. 22 (1961), 297-318.
6. M. M. Day, Some characterizations of inner product spaces, Trans. Amer. Math. Soc. 62 (1947), 320-337.
7. R. C. James, Orthogonality in normed linear spaces, Duke Math. J. 12 (1945), 291-302.
8. O. P. Kapoor and J. Mathur, Some geometric characterizations of inner product spaces, Bull. Austral. Math. Soc. 24 (1981), 239-246.
9. O. P. Kapoor and J. Prasad, Orthogonality and characterizations of inner product spaces, Bull. Austral. Math. Soc. 19 (1978), 403-416.
10. G. Nordlander, The modulus of convexity in normed linear spaces, Ark. Mat. 4, No. 2 (1958), 15-17.
11. K. Ohira, On some characterizations of abstract Euclidean spaces by properties of orthogonality, Kumamoto J. Sci. (Math.) 1 (1952), 23-26.
