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INTRODUCTION

Let E be a real or complex normed linear space with unit sphere S =
{x E E: Ilxll = I} and let A> 0, 0<6 < 2. We say that E satisfies, respectively,
the properties PA and Re if

PA: x, YES, IIX+AYII = Ilx-AYII::::> Ilx+AYI1 2 = 1+A2
,

Re : 15(6) = 1- (1- 62/4)1/2,

where 15(6) = inf{1 - (11x + yll/2): x, YES, Ilx - yll = 6} denotes the
modulus of convexity of E.

It is well known that inner product spaces satisfy the above properties
for every A and 6. On the other hand Borwein· and Keener [4] and
Nordlander [10] conjectured, respectively, that if E satisfies either PA or Re

for some A or 6 then E is an inner product space.
Although the equivalence between the above properties is known (it is

mentioned in [3]), we cannot give an exact reference for it and we com
mence this paper with a proof of this equivalence when A=6(4-62 )-1/2.

Then we prove that the mentioned conjectures are true for almost every A
and 6, but they are false (at least when E is real and two-dimensional) for A
and 6 belonging to a countable and dense subset of ~ + and (0, 2), respec
tively. In particular, we prove that the conjecture is true for the case A= 2
specially considered in [4] in connection with some problems relative to
Chebyshev centers.

With this and the paper of Amir and Mach [2] all the conjectures and
open questions posed in [4] and [10] are solved, except for a new conjec
ture which can be stated in the following terms: either PA or Reo without
restriction on the values of A and 6, is a characteristic property of the inner
product spaces of real dimension ~ 3.
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The following elementary lemma is the basis of many arguments which
we shall use.

LEMMA 1. Let S be the unit sphere of a norm in 1R 2 and let S(IX) be the
point of S which is to a given point s(O) at an angle 0:::; IX < 2n, measured
with a given orientation of the plane. Then for every A> 0 the real functions

IX E [0, n] -+ Ils(O) + AS(IX)II, IX E [0, n] -+ Ils(O) - AS(IX)II

are continuous and, respectively, decreasing and increasing.

PROPOSITION 1. Let S be the unit sphere of a real or complex normed
linear space E, let 0 < e < 2, and let

(j(e) = inf{ 1-lIx + YII/2: x, YES, Ilx - yll = e}

be the modulus of convexity of E. Then for ,1.= e(4 - e2) -1/2 the following
properties are equivalent:

PA:x, YES, Ilx+AYII = Ilx-AYIl ==> IIx+AYI1 2 = 1+,1.2

P~: x, YES, Ilx+AYI1 2 = 1+ ,1.2 ==> IIX+AYII = Ilx-AYII

Qe:x, YES, Ilx- yll =e==> Ilx+ YI1 2 =4_e2

Re: (j(e) = 1- (1- e2/4 )1/2

Te: '<Ix, yE S, [llx- yll- e][llx + YII 2
- (4 _e2

)] :::;0.

Proof We shall prove the six implications

As we shall see the third and the fifth are obvious. The first is rather
intricate, but we shall make use of it later.

(PA ==> P~). Assume by contradiction the existence of x, yES such that

Then it follows from Lemma 1 and the hypothesis that in the real plane
<x, y), endowed with the orientation ill = [x, y], there exist u, v E S such
that [u, y] = [x, v] = ill and
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Let a, bE IR be such that ax + b(u - x) = x + Ay. Since the function
F(t) = II ax + t(u - x) II is convex and such that

F(O) = F(a) = lal,

the ordering of the points 0, a, b, b + 1 implies that F attains its minimum
value, (1 + A2

)1/2, in a real segment which contains such points.
If a = -(1 + A2

)1/2 then, writing

-(1 +A2
)1/2 x+b(u-X)=X+Ay

in the equivalent form

2 1/2 (1 + A2
)1/2 b _ (1 + A2

)1/2 A
- (1 + A) x + 1+ (1 + A2) 1/2 (u - x) - 1+ (1 + A2) 1/2 Y

we obtain the false equality

(1 + A2 )1/2 A
1+(I+A2 )1/2

Therefore a = (1 + A2
)1/2 and the four points

x, u, (1 + A2 ) - 1/2 (x + Ay), (1 + A2 ) - 1/2 (u + Ay )

are in a segment contained in S.
For analogous reasons also the four points

y, v, (1 +A2 )-1/2 (X+Ay), (1 +A2
)-1/2 (X+AV)

are in a segment contained in S.
If IIx - AYl12 > 1+ A2 then [x, u] = [v, y] = co and all the above seven

points are in the straight line passing through x and y, from which follows
the contradictory equality Ilx + AYII = 1 + A.

In the other case, Ilx - Ayf < 1+ A2, we have that Ilu + AvI1 2 < 1+ A2 and
hence that for every 0 < t < 1

Iltx + (1- t)u + A[ty + (1- t)v]11 2 < 1+ A2
•

Therefore Lemma 1 implies that

II tx + (1 - t)u - A[ty + (1 - t) v] 11 2 ~ 1+ A2

which is contradictory with Ilx-Ayf< 1+A2
•
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Then VES and

lIu + AV II 2= Ilu - ..1.vf = 4(4 - €2)~1 = 1+ ..1.2.

Since the function F(t) = Iitu + ..1.vll is convex and such that ..1.= F(O) <
F( 1) = F( - 1) = (1 + ..1.2)1/2, it follows from Lemma 1 that U E S, i.e., that
IIx+ yI12=4_€2.

(Q. =R.). It is obvious.
(R. = Q.). It is proved in [10] that in every real plane of E the set

{x + y: x, YES, Ilx - yll = €} is a symmetric Jordan rectifiable curve which
encloses (4 - €2) times the area enclosed by S. Then the existence of x, yES
such that Ilx- yll =€ and Ilx+ yI12<4_€2 would imply the contradictory
existence of u, v E S such that Ilu - vii = €and Ilu + vI1 2> 4_ €2.

(Q. = T.). It is an immediate corollary of Lemma 1.
(T.=P,J Let x, yES be such that Ilx+..1.yll = Ilx-..1.yll and let

u = Ilx + ..1.yll ~I (x + ..1.Y),

Then u, v E Sand

Ilu-vll =2..1.llx+..1.YII-1,

If Ilx + ..1.Yl12 < 1+..1.2 then

II u - v II > 2..1.( 1+ ..1.2)- 1/2 = €,

v= Ilx+..1.YII-I (x-..1.y).

lIu+vll =21Ix+..1.YII-I.

Ilu + vl1 2> 4(1 + ..1.2)-1 = 4_ €2

which contradicts T•. And analogously for Ilx + ..1.yll2 > 1+..1.2.

LEMMA 2. If a real or complex normed linear space E satisfies the
property PA. (A > 0), then in every real two-dimensional linear subspace of E
there exist x, yES such that

IIx + ..1.YII = Ilx - ..1.yll = IIAx + YII = IIAx - yll = (1 + ..1.2)1/2.

Proof. We can suppose that E is the linear space ~2 endowed with a
norm and an orientation w.

Let s: IX E [0, 21t] --+ s( IX) E S be the parametrization of S mentioned in
Lemma 1. Elementary arguments prove that if E satisfies the property P A.

then for every 0 ~ IX ~ 1t there exists a unique IX < g( IX) < IX + 1t such that

Ils(IX) + ..1.s(g(IX)) II = Ils(IX) - ..1.s( g( IX))II, [S(IX), s(g(IX))] = W.
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Also it is easy to see that the real function g is continuous and strictly
increasing on [0, n], and that if either S(IX) + AS(g(IX)) = s(fJ) + AS(g(fJ)) or
AS(IX) + s(g(IX)) = AS(fJ) + s(g(fJ)) then IX = fJ.

Therefore the set

SA = {x + AY: x, yE S, [x, y] = OJ, Ilx+ AYII = Ilx-Ayll}

is the symmetric Jordan rectifiable curve (1 +A2)1/2 S and the set

S';. = {Ax + y: x, yE S, [x, y] = OJ, Ilx+ AYII = Ilx- Ayll}

is also a symmetric Jordan rectifiable curve.
The area enclosed by SA is (1 + A2

) times the area enclosed by S and, if
we suppose that OJ is the positive orientation of the plane, the area enclosed
by S';. is given by

A(S';.) ={' [As I (IX) +Sl (g(IX))] d[AS2(IX) +S2(g(IX))]

-r [As2(IX) + S2(g(IX))] d[AsI(IX) + SI(g(IX))].
o

Taking into account the analogous formulae for A(SA) and A(S) we
obtain that A(S';.)=(I+A2)A(S)=A(SA)' Thus SA"S';.#0 and there
exist x, yES such that

[x, y] =OJ.

Finally Proposition 1 assures that Ilh - YI1 2 = 1+ A2.

PROPOSITION 2. If a real or complex normed linear space E satisfies the
property p), for some A> 0 such that

A¢D= {tan(kn/2n): n= 2,3, ... ; k= 1, 2, ..., n-l}

then E is an inner product space.

Proof Since E is an inner product space if and only if the same is true
for all its real two-dimensional linear subspaces, we can consider E as the
linear space 1R 2 endowed with a norm.

Let A> O. By Lemma 2 we can take x, yES such that

IIX+AYII = Ilx-AYII = Ilh+ yll = Ilh- yll = (1 +A2
)1/2.

Performing, if necessary, a linear transformation of the plane we can
suppose that x = s(O) = (1,0), Y = s(n/2) = (0, 1), where s denotes the
parametrization of S given in Lemma 1.
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Then, if C is the unit euclidean circumference of the plane and if
0< 8 < nl2 is such that A. = tan 8, the points

belong to S n C and, taking into account Proposition 1, they are such that

The same arguments are valid to prove that the points

x 2 = (1 + A. 2 ) -1/2 (x 1 + A.yd = s(28),

Y2 = (1 + A.2 )-1/2 (-hi + yd = s(28 + n12)

also belong to S n C and they are such that

Pursuing this process we obtain a set {x, Xl' X 2' ... } which is contained
in S n C and, provided A. rf. D, is dense in Sand C. Therefore S = C and E is
an inner product space.

Remark. If the unit sphere of a norm in 1R2 is invariant under rotations
of angle nl2n (n = 2, 3, ... ) and if A. = tan(knI2n) (k = 1, 2, ..., n - 1), then
such a normed linear space satisfies the property PA'

Thus for every A. E D there exist real two-dimensional noninner product
spaces satisfying PA' for example, the linear space 1R 2 endowed with the
norm whose unit sphere is the regular 4n-gon.

COROLLARY. For e -:12 cos(knI2n) (n = 2, 3, ... ; k = 1, 2, ..., n - 1), the
properties Q" R" and T, are characteristic of the inner product spaces.

Nevertheless, for e = 2 cos(knI2n) there exist real two-dimensional non
inner product spaces satisfying the above properties.

Conjecture. The property P A' without restriction on A. > 0, is charac
teristic of the inner product spaces of real dimension ~ 3.

PROPOSITION 3. If a real or complex normed linear space E satisfies the
property

P2: x, YES, IIx + 2yl\ = Ilx - 2yll => Ilx + 2yl12 = 5

then E is an inner product space.

Proof We only need to show that 2 rf. D.

640/55/3-6
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Suppose there exist n = 2, 3, .., and k = 1, 2, ... , n - 1, such that
tan(kn/2n) = 2. Denoting () = kn/2n and using a well-known trigono
metrical formula we have that

o.

( 2n) (2n) 2 (2n) 4 ( 2n ) 2n-2- x+ x- .. ·+ x
1 3 5 - 2n-l

and this follows from the fact that if 2n = 2Pq, with q odd, then for
k = 3,5, ..., 2n - 1, (1') = 2Prk> with rk integer.

Remark. Following James [7] and Carlsson [5] we can say that x is
A-Isosceles orthogonal to Y, x .iu Y, when Ilx + AYII = Ilx - AYII and that x
is A-Pythagorean orthogonal to Y, x .i;,p Y, when Ilx+ AyI1 2 = IIxll 2 + A2 11y1I 2

•

Then we can paraphrase Proposition 2 by saying that for every A~ D the
property (or its converse)

x, YES, x.ly=>x.ly
u AP

is characteristic of the inner product spaces.
With this formulation Proposition 2 is in the line of many results of

characterization of inner product spaces based in the relation between
various types of generalized orthogonality in normed linear spaces [1, 6, 8,
9, 11].
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